Učni načrt predmeta

Predmet:
Poslovna inteligenca II
Course:
Business Inteligence II
Študijski program in stopnja /
Study programme and level
Študijska smer /
Study field
Letnik /
Academic year
Semester /
Semester
Informacijske in komunikacijske tehnologije, 3. stopnja Inteligentni sistemi in robotika 1 1
Information and Communication Technologies, 3rd cycle Intelligent Systems and Robotics 1 1
Vrsta predmeta / Course type
Izbirni / Elective
Univerzitetna koda predmeta / University course code:
IKT3-629
Predavanja
Lectures
Seminar
Seminar
Vaje
Tutorial
Klinične vaje
work
Druge oblike
študija
Samost. delo
Individ. work
ECTS
15 15 15 105 5

*Navedena porazdelitev ur velja, če je vpisanih vsaj 15 študentov. Drugače se obseg izvedbe kontaktnih ur sorazmerno zmanjša in prenese v samostojno delo. / This distribution of hours is valid if at least 15 students are enrolled. Otherwise the contact hours are linearly reduced and transfered to individual work.

Nosilec predmeta / Course leader:
prof. dr. Matjaž Gams
Sodelavci / Lecturers:
dr. Aleksander Pivk
Jeziki / Languages:
Predavanja / Lectures:
slovenščina, angleščina / Slovenian, English
Vaje / Tutorial:
Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:
Prerequisites:

Zaključen študij druge stopnje s področja informacijskih ali komunikacijskih tehnologij ali zaključen študij druge stopnje na drugih področjih z znanjem osnov s področja predmeta. Potrebna so tudi osnovna znanja matematike, računalništva in informatike.

Completed second-cycle studies in information or communication technologies or completed second-cycle studies in other fields with knowledge of fundamentals in the field of this course. Basic knowledge of mathematics, computer science and informatics is also requested.

Vsebina:
Content (Syllabus outline):

Znanstvena metoda: Struktura znanstvenega védenja, znanstvene aktivnosti in procesi. Uporaba znanstvene metode pri razvoju, učenju, preverjanju in vrednotenju umetno-inteligenčnih modelov ter velikih jezikovnih modelov v kontekstu poslovne inteligence in odločanja.

Uvod: Definicija inteligence, umetne inteligence in velikih jezikovnih modelov ter njihova vloga v sodobnih BI sistemih. Pregled razvoja BI od klasičnih poročilnih sistemov do AI- in LLM-podprtih odločilnih sistemov. Razlogi, kriteriji in področja uvajanja AI-podprte BI, tipične omejitve, pasti in najboljše prakse. Razmerje med poslovno inteligenco, poslovno analitiko in AI-native pristopi.

Upravljanje s podatki: Podatkovna skladišča in sodobne podatkovne arhitekture za AI in LLM. Kakovost podatkov, priprava, čiščenje in oplemenitenje podatkov, migracija in posredovanje podatkov za potrebe učenja in uporabe modelov. Podatki kot temelj delovanja analitičnih, strojno-učnih in LLM-podprtih BI rešitev ter pregled najpogostejših napak in tveganj.

Poslovna analitika: Opredelitev poslovnih problemov kot vhod v analitične in AI-podprte rešitve. Analitično in modelno podprto reševanje poslovnih in tržnih problemov z uporabo metod strojnega učenja, napovednega modeliranja in LLM. Ovrednotenje rezultatov, razložljivost modelov in prenos rezultatov v poslovno prakso.

Strategije trženja in neposredno trženje: Uporaba AI in LLM pri oblikovanju poslovnih in trženjskih strategij. Analiza trga in strank z uporabo naprednih analitičnih in generativnih pristopov, kontaktne strategije, tržni kanali in integracijski izzivi. Personalizacija vsebin, spremljanje vedenja strank, upravljanje tržne učinkovitosti ter trženje na osnovi dogodkov in v realnem času.

Teorija iger in njena uporaba: Osnovni koncepti teorije iger in njihova povezava z algoritmi odločanja in AI. Nashevo ravnovesje, čiste in mešane strategije ter poslovne uporabe pri pogajanjih, dražbah in strateških interakcijah. Računalniška simulacija in podpora odločanju.

Izzivi pri razvoju programskih sistemov in implementacija projektov: Razvoj in uvajanje AI- in LLM-podprtih BI sistemov v organizacije. Tehnični, organizacijski in projektni izzivi, integracija modelov v obstoječe sisteme ter obvladovanje kompleksnosti večjih projektov.

Uporaba generativne umetne inteligence v BI: Veliki jezikovni modeli kot osrednji mehanizem sodobne BI: avtomatizacija analize podatkov, interpretacija rezultatov, generiranje poročil in scenarijev ter podpora odločanju. Uporaba LLM v kombinaciji z drugimi AI metodami ter obravnava omejitev, tveganj in odgovorne rabe.

Orodja in rešitve: Pregled sodobnih AI- in LLM-podprtih orodij ter platform za poslovno inteligenco in analitiko ter pregled razvojnih smeri in prihajajočih tehnologij.

Scientific Method: Structure of scientific knowledge, scientific activities, and processes. Application of the scientific method in the development, training, validation, and evaluation of artificial intelligence models and LLMs in the context of business intelligence and decision-making.

Introduction: Definition of intelligence, artificial intelligence, and large language models (LLMs), and their role in modern BI systems. Overview of the evolution of BI from traditional reporting systems to AI- and LLM-enabled decision-support systems. Reasons, criteria, and application areas for AI-driven BI, typical limitations, pitfalls, and best practices. Relationship between business intelligence, business analytics, and AI-native approaches.

Data Management: Data warehouses and modern data architectures for AI and LLM applications. Data quality, data preparation, cleansing, and enrichment, data migration, and data delivery to support model training and deployment. Data as the foundation of analytical, machine learning, and LLM-enabled BI solutions, with an overview of common errors and risks.

Business Analytics: Definition of business problems as inputs to analytical and AI-driven solutions. Analytical and model-based approaches to solving business and market problems using machine learning methods, predictive modeling, and LLMs. Evaluation of results, model interpretability, and transfer of outcomes into business practice.

Marketing Strategies and Direct Marketing: Application of AI and LLMs in the development of business and marketing strategies. Market and customer analysis using advanced analytical and generative approaches, contact strategies, marketing channels, and integration challenges. Content personalization, customer behavior monitoring, marketing performance management, event-based marketing, and real-time marketing.

Game Theory and Its Application: Fundamental concepts of game theory and their connection to decision-making algorithms and AI. Nash equilibrium, pure and mixed strategies, and business applications in negotiations, auctions, and strategic interactions. Computer simulation and decision-support applications.

Challenges in Software System Development and Project Implementation: Development and deployment of AI- and LLM-enabled BI systems in organizations. Technical, organizational, and project-related challenges, integration of models into existing systems, and management of complexity in large-scale projects.

Use of Generative Artificial Intelligence in BI: LLMs as a central mechanism of modern BI: automation of data analysis, interpretation of results, generation of reports and scenarios, and decision support. Use of LLMs in combination with other AI methods, along with a discussion of limitations, risks, and responsible use.

Tools and Solutions: Overview of contemporary AI- and LLM-enabled tools and platforms for business intelligence and analytics, as well as an outlook on emerging technologies and future development trends.

Temeljna literatura in viri / Readings:

1. G. Phillips-Wren, A. Håkansson. Towards using prompt engineering in large language models to assist decision making. Procedia Computer Science, 270, 5225–5238, 2025. DOI: 10.1016/j.procs.2025.09.650
2. A. Vines, D. N. Ege, H. H. Øvrebø, V. Stubberud, et al. Enabling intelligent data modeling with AI for Business Intelligence. Systems 13(9), 811, 2025. DOI: 10.3390/systems13090811
3. M. Chau. An IS research agenda on large language models. ACM Transactions on Management Information Systems, 2025. DOI: 10.1145/3713032
4. W. Wang, P. Zhang, C. Sun & D. Feng. Smart customer service in unmanned retail store enhanced by a large language model. Scientific Reports 14, 19838, 2024. DOI: 10.1038/s41598-024-71089-9
5. Erik Cambria, Lorenzo Malandri, Fabio Mercorio, Navid Nobani, Andrea Seveso. XAI meets LLMs: A Survey of the Relation between Explainable AI and Large Language Models. arXiv preprint, 2024.
6. Ahmed Ali Linkon, Mujiba ShaimaMujiba Shaima, et al. Advancements and Applications of Generative AI and LLMs on Business Management: A Comprehensive Review. Journal of Computer Science and Technology Studies, 6(1), 225–232, 2024. DOI: 10.32996/jcsts.2024.6.1.26
7. Jie Jiang, Haining Xie, Yu Shen, et al. DataLab: A Unified Platform for LLM-Powered Business Intelligence. arXiv preprint, Dec 2024.

Cilji in kompetence:
Objectives and competences:

Cilj predmeta je podati splošno in napredno znanje s področja poslovne inteligence in poslovne analitike, pri čemer je poseben poudarek namenjen uporabi umetne inteligence in velikih jezikovnih modelov kot temeljnih tehnologij sodobnih sistemov za podporo poslovnemu in strateškemu (zlasti marketinškemu) odločanju. Predmet obravnava poslovno inteligenco kot aplikacijski okvir, znotraj katerega AI in LLM omogočajo avtomatizirano analizo podatkov, generiranje vpogledov, napovedovanje scenarijev in podporo kompleksnim odločitvam.

V uvodnem delu so predstavljeni konceptualni in tehnološki temelji poslovne inteligence, poslovne analitike in AI-native pristopov, cilji in namen njihove uporabe ter ključni tehnični, organizacijski in metodološki izzivi njihovega uvajanja v prakso. Obravnavane so tudi najboljše prakse pri načrtovanju, implementaciji in vrednotenju AI- in LLM-podprtih BI rešitev.

Študenti, ki bodo zaključili predmet, bodo usvojili poglobljeno razumevanje vloge umetne inteligence in velikih jezikovnih modelov v poslovni inteligenci ter bodo usposobljeni za uporabo naprednih analitičnih, strojno-učnih in generativnih metod pri reševanju zahtevnih poslovnih problemov. Sposobni bodo kritično presojati rezultate AI in LLM modelov, ovrednotiti njihovo uporabnost v poslovnem okolju ter učinkovito prenesti analitične in modelne rešitve v prakso strateškega odločanja.

The objective of the course is to provide general and advanced knowledge in the field of business intelligence and business analytics, with a particular emphasis on the use of artificial intelligence and large language models as core technologies of modern decision-support systems for business and strategic (especially marketing) decision-making. Business intelligence is addressed as an application framework in which AI and LLMs enable automated data analysis, generation of insights, scenario forecasting, and support for complex decision processes.

In the introductory part, the conceptual and technological foundations of business intelligence, business analytics, and AI-native approaches are presented, along with the objectives, purposes, and key technical, organizational, and methodological challenges related to their practical adoption. Best practices in the design, implementation, and evaluation of AI- and LLM-enabled BI solutions are also discussed.

Students who complete this course will acquire an in-depth understanding of the role of artificial intelligence and large language models in business intelligence and will be capable of applying advanced analytical, machine learning, and generative methods to solve complex business problems. They will be able to critically assess the results produced by AI and LLM models, evaluate their suitability in business contexts, and effectively transfer analytical and model-based solutions into strategic decision-making practice.

Predvideni študijski rezultati:
Intendeded learning outcomes:

Študenti bodo z uspešno opravljenimi obveznostmi tega predmeta pridobili:
- temeljno razumevanje znanstvenega pristopa k reševanju poslovnih problemov z uporabo podatkov, AI in LLM,
- poglobljeno razumevanje poslovnih procesov in odločanja v realnem poslovnem okolju,
- sistematičen pregled nalog in metod poslovne inteligence z izrazitim poudarkom na AI- in LLM-podprtih pristopih,
- obvladovanje tehničnih in poslovnih vidikov uporabe metod poslovne inteligence, strojnega učenja in velikih jezikovnih modelov,
- sposobnost uporabe obstoječih metod strojnega učenja in LLM na novih in kompleksnih poslovnih problemih,
- sposobnost presojanja učinkovitosti metod strojnega učenja, rudarjenja podatkov in LLM pri konkretnih nalogah poslovne inteligence,
- napredna znanja iz izbranih področij poslovne inteligence, analitike in umetne inteligence,
- sposobnost samostojnega reševanja zahtevnih poslovnih odločitev ter priprave poglobljenih analitičnih podlag.

Students who complete this course will acquire:
- a fundamental understanding of the scientific approach to solving business problems using data, AI, and large language models (LLMs),
- a solid understanding of business processes and decision-making in real-world business environments,
- a systematic overview of tasks and methods in business intelligence, with a strong emphasis on AI- and LLM-based approaches,
- mastery of the technical and business aspects of business intelligence, machine learning methods, and large language models,
- the ability to apply existing machine learning methods and LLMs to new and complex business problems,
- the ability to assess the effectiveness of machine learning, data mining, and LLM methods when applied to specific business intelligence tasks,
- advanced knowledge in selected areas of business intelligence, analytics, and artificial intelligence,
- the ability to independently solve complex business decision-making problems and produce advanced analytical solutions.

Metode poučevanja in učenja:
Learning and teaching methods:

Predavanja, seminar, konzultacije, individualno delo.

Lectures, seminar, consultations, individual work.

Načini ocenjevanja:
Delež v % / Weight in %
Assesment:
Seminarska naloga
80 %
Seminar work
Ustni zagovor
20 %
Oral defense
Reference nosilca / Lecturer's references:
1. M. Gams, I. Yu-Hua Gu, A. Harma, A. Munos, V. Tam. Artificial intelligence and ambient intelligence. Journal of ambient intelligence and smart environments, ISSN 1876-1364, 2019, vol. 11, no. 1, str. 71-86, doi: 10.3233/AIS-180508.
2. M. Gams, T. Kolenik. Relations between Electronics, Artificial Intelligence and Information Society through Information Society Rules, Electronics 2021, 10(4), MDPI, DOI 10.3390/electronics10040514
3. M. Gams, T. Horvat, Ž. Kolar, P. Kocuvan, K. Mishev & M.S. Misheva. Evaluating a Nationally Localized AI Chatbot for Personalized Primary Care Guidance: Insights from the HomeDOCtor Deployment in Slovenia. Healthcare 13(15):1843, 2025. DOI: 10.3390/healthcare13151843.
4. Shulajkovska, Miljana, Smerkol, Maj, Noveski, Gjorgji, Bohanec, Marko, and Gams, Matjaž. Artificial intelligence-based decision support system for sustainable urban mobility. Electronics, 2024, vol. 13, no. 18, 14 pages. ISSN 2079-9292. DOI: 10.3390/electronics13183655.
5. M. Gams. The Oath of Researchers and Developers. Informatica, 49(1), 1–6. 2025. DOI: 10.31449/inf.v49i1.8149