Učni načrt predmeta

Predmet:
Kognitivne znanosti
Course:
Cognitive Sciences
Študijski program in stopnja /
Study programme and level
Študijska smer /
Study field
Letnik /
Academic year
Semester /
Semester
Informacijske in komunikacijske tehnologije, 3. stopnja Inteligentni sistemi in robotika 1 1
Information and Communication Technologies, 3rd cycle Intelligent Systems and Robotics 1 1
Vrsta predmeta / Course type
Izbirni / Elective
Univerzitetna koda predmeta / University course code:
IKT3-630
Predavanja
Lectures
Seminar
Seminar
Vaje
Tutorial
Klinične vaje
work
Druge oblike
študija
Samost. delo
Individ. work
ECTS
15 15 15 105 5

*Navedena porazdelitev ur velja, če je vpisanih vsaj 15 študentov. Drugače se obseg izvedbe kontaktnih ur sorazmerno zmanjša in prenese v samostojno delo. / This distribution of hours is valid if at least 15 students are enrolled. Otherwise the contact hours are linearly reduced and transfered to individual work.

Nosilec predmeta / Course leader:
prof. dr. Matjaž Gams
Sodelavci / Lecturers:
doc. dr. Tine Kolenik , dr. Vedrana Vidulin
Jeziki / Languages:
Predavanja / Lectures:
Slovenščina, angleščina / Slovenian, English
Vaje / Tutorial:
Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:
Prerequisites:

Zaključen študij druge stopnje s področja informacijskih ali komunikacijskih tehnologij ali zaključen študij druge stopnje na drugih področjih z znanjem osnov s področja predmeta. Potrebna so tudi osnovna znanja matematike, računalništva in informatike.

Completed second-cycle studies in information or communication technologies or completed second-cycle studies in other fields with knowledge of fundamentals in the field of this course. Basic knowledge of mathematics, computer science and informatics is also requested.

Vsebina:
Content (Syllabus outline):

Znanstvena metoda: Strukture znanstvenega znanja, znanstvene aktivnosti in raziskovalni procesi. Uporaba znanstvene metode v kognitivnih znanostih, zlasti pri empiričnem in teoretičnem razumevanju uma in inteligence. Vpliv umetne inteligence in velikih jezikovnih modelov (LLM; npr. GPT) na sodobno znanstveno raziskovanje ter na modeliranje, analizo in razlago kognitivnih procesov.

Uvod: Uvod v kognitivne znanosti kot interdisciplinarni študij uma in inteligence, ki povezuje psihologijo, nevroznanost, umetno inteligenco, filozofijo in lingvistiko. Raziskovanje uma, zavesti, čustev, podzavesti in kvalij ter pregled različnih pristopov v psihologiji in filozofiji uma.
Povezava med kognitivnimi znanostmi, umetno inteligenco in inteligentnimi sistemi, z uporabo velikih jezikovnih modelov (LLM; npr. GPT) za modeliranje in preučevanje kognitivnih funkcij.

Kognitivni paradoksi in koncepti: Pregled ključnih paradigm v kognitivni znanosti, kot so Turingov test in njegove variacije (TT, TTT, TTTT), ter razprava o Searlovi kitajski sobi in izbranih klasičnih delih. Problem telo–duh in sodobne teorije zavesti. Razprava o velikih jezikovnih modelih (LLM; npr. GPT): ali lahko takšni modeli izkazujejo oblike inteligence, generativne sposobnosti ali elemente kognitivnega delovanja.
Raziskovanje lahkega in težkega problema zavesti ter vpliv sodobnih AI in LLM pristopov na te razprave. Pregled aktualnih trendov in prihodnjega razvoja umetne inteligence ter njihove vloge v kognitivnih znanostih.

Kognitivne arhitekture: Teoretične osnove kognitivnih arhitektur in vloga velikih jezikovnih modelov pri modeliranju kognitivnih procesov. Pregled različnih kognitivnih arhitektur, vključno s sistemi tipa 1 in tipa 2. Arhitekture podsistemov kognicije ter integrirane celovite arhitekture.
Nizko- in visokonivojske arhitekture ter njihova vloga pri simulaciji kognitivnih funkcij, tudi z uporabo sodobnih LLM pristopov.

Kognitivne tehnike in metode: Metode kognitivne nevroznanosti, kot so funkcionalno slikanje možganov, EEG in druge tehnike za proučevanje kognitivnih procesov. Modeliranje kognicije z uporabo logike, pravil, konceptov, analogij, asociacij in povezav. Kognitivni agenti ter vloga umetne inteligence in velikih jezikovnih modelov pri razvoju inteligentnih kognitivnih sistemov. Praktična uporaba izbranih kognitivnih tehnik in orodij, kot so simulacije in napovedne analize, omogočene z AI in LLM.

Praktično usposabljanje: Praktična uporaba izbranih tehnik in orodij kognitivnih znanosti, vključno z uporabo velikih jezikovnih modelov (LLM; npr. GPT) za reševanje kognitivnih izzivov. Razvijanje kognitivnih modelov in sistemov ter uporaba LLM za simulacijo, analizo in interpretacijo kognitivnih procesov v realnem času.

Scientific Method: Structures of scientific knowledge, scientific activities, and research processes. Application of the scientific method in cognitive sciences, particularly in the empirical and theoretical understanding of the mind and intelligence. The impact of artificial intelligence and large language models (LLMs; e.g., GPT) on contemporary scientific research and on the modeling, analysis, and interpretation of cognitive processes.

Introduction: Introduction to cognitive sciences as an interdisciplinary study of the mind and intelligence, integrating psychology, neuroscience, artificial intelligence, philosophy, and linguistics. Exploration of the mind, consciousness, emotions, the subconscious, and qualia, as well as an overview of different approaches in psychology and the philosophy of mind. The relationship between cognitive sciences, artificial intelligence, and intelligent systems, with the use of large language models (LLMs; e.g., GPT) for modeling and examining cognitive functions.

Cognitive Paradoxes and Concepts: Overview of key paradigms in cognitive science, such as the Turing Test and its variations (TT, TTT, TTTT), and discussion of Searle’s Chinese Room and selected classical works. The mind–body problem and contemporary theories of consciousness. Discussion of large language models (LLMs; e.g., GPT): whether such models can exhibit forms of intelligence, generative capabilities, or elements of cognitive functioning. Examination of the easy and hard problems of consciousness and the influence of modern AI and LLM approaches on these debates. Overview of current trends and future developments in artificial intelligence and their role in cognitive sciences.

Cognitive Architectures: Theoretical foundations of cognitive architectures and the role of large language models in modeling cognitive processes. Overview of different cognitive architectures, including Type 1 and Type 2 systems. Architectures of cognitive subsystems and integrated comprehensive architectures. Low- and high-level architectures and their role in simulating cognitive functions, including the use of contemporary LLM approaches.

Cognitive Techniques and Methods: Methods of cognitive neuroscience, such as functional brain imaging, EEG, and other techniques used to study cognitive processes. Cognitive modeling using logic, rules, concepts, analogies, associations, and connections. Cognitive agents and the role of artificial intelligence and large language models in the development of intelligent cognitive systems. Practical application of selected cognitive techniques and tools, such as simulations and predictive analyses enabled by AI and LLMs.

Practical Training: Practical application of selected techniques and tools in cognitive sciences, including the use of large language models (LLMs; e.g., GPT) to address cognitive challenges. Development of cognitive models and systems and the use of LLMs for real-time simulation, analysis, and interpretation of cognitive processes.

Temeljna literatura in viri / Readings:

1. M. W. Eysenck, M. T. Keane. Cognitive Psychology, A Student's Handbook, 8th Edition, 2020, Psychology Press, DOI: 10.4324/9781351058513.
2. P. Dutta, S. Pal, A. Kumar, K. Cengiz. Artificial Intelligence for Cognitive Modeling: Theory and Practice, 2023, CRC Press.
3. D. Poeppel, G. R. Mangun, M. S. Gazzaniga. The Cognitive Neurosciences, 6th Edition, 2020, MIT Press, ISBN 9780262356176.
4. M. T. Banich, R. J. Compton. Cognitive Neuroscience, 2023, Cambridge University Press, DOI: 10.1017/9781108923361.
5. A. C. K. Karpinski, T. Griffiths, M. T. H. Chi, et al. Large Language Models as Cognitive Models: Opportunities and Limitations, Nature Human Behaviour, 2025. DOI: 10.1038/s41562-024-01958-7
6. Sifatkaur Dhingra, Manmeet Singh, Vaisakh S.B., Neetiraj Malviya, S. S. Gill. Mind Meets Machine: Unravelling GPT-4's Cognitive Psychology, 2023, ArXiv, DOI: 10.48550/arXiv.2303.11436.
7. Marcel Binz, Eric Schulz. Using Cognitive Psychology to Understand GPT-3, 2022, Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.2218523120.
8. Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, et al. Sparks of Artificial General Intelligence: Early Experiments with GPT-4, 2023, ArXiv, DOI: 10.48550/arXiv.2303.12712.

Cilji in kompetence:
Objectives and competences:

Razviti znanje in sposobnost konkretne vpeljave kognitivnih metod in tehnik v računalniške programe, softverske ali podprte z robotskimi sistemi, je osnovni cilj predmeta.

Seznanitev z osnovnimi pristopi in arhitekturami je tudi pomemben cilj. Osnovna znanja s področja so dodatni cilj.

Pomembno je razumevanje interdisciplinarnih pogledov na vrsto kognitivnih konceptov, od nižjenivojskih do visokonivojskih kognitivnih sistemov, arhitektur in modelov.

Tehnike in metode kognitivnih modelov omogočajo poznavanje računalniških metod, še posebej kognitivnih agentov.

Študenti bodo obvladali osnove kognitivnih znanosti in bodo usposobljeni za praktično uporabo izbranih orodij, metod, tehnik in arhitektur kognitivnih sistemov. Spoznali se bodo tudi na uporabo orodij generativne umetne inteligence.

The basic goal is to foster knowledge and capability of applying cognitive methods and techniques into computer and robotic systems.

The second goal is to improve knowledge of cognitive approaches and architectures.

One of the course objectives is to improve knowledge of interdisciplinary viewpoints on selected cognitive concepts from lower-level to higher-level systems, architectures and modules.

Various cognitive techniques and methods including cognitive agents enable constructing computer methods simulating cognitive functions.

The students will master the basics of cognitive sciences and will be capable of using selected tools, methods, techniques and architectures of cognitive systems. They will also become advanced users of generative AI.

Predvideni študijski rezultati:
Intendeded learning outcomes:

Študenti bodo z uspešno opravljenimi obveznostmi tega predmeta pridobili:
- osnove znanstvenega pristopa v kognitivnih znanostih,
- osnovna znanja o kognitivnih znanostih,
- pregled obstoječih konceptov in metod kognitivnih znanosti,
- obvladana uporaba izbranih metod in tehnik kognitivnih sistemov,
- boljše znanje izdelovanja kognitivih IT in AI sistemov,
- usposobljenost za praktično implementiranje kognitivnih sistemov.

Students successfully completing this course will acquire:
- Basic scientific approach in cognitive sciences
- Basic knowledge about cognitive sciences
- Overview of existing contexts and methods in cognitive sciences
- Mastering selected methods and techniques of cognitive systems
- Improved knowledge about designing AI and AI cognitive systems
- Capability of practical use of selected cognitive architectures and systems

Metode poučevanja in učenja:
Learning and teaching methods:

Predavanja, seminar, konzultacije, individualno delo.

Lectures, seminar, consultations, individual work.

Načini ocenjevanja:
Delež v % / Weight in %
Assesment:
Seminarska naloga
80 %
Seminar work
Ustni zagovor
20 %
Oral defense
Reference nosilca / Lecturer's references:
1. T. Kolenik, M. Gams. Persuasive Technology for Mental Health: One Step Closer to (Mental Health Care) Equality?, IEEE Technology and Society Magazine 2021, 40 (1), 80-86, DOI 10.1109/MTS.2021.3056288.
2. T. Kolenik, M. Gams. Intelligent Cognitive Assistants for Attitude and Behavior Change Support in Mental Health: State-of-the-Art Technical Review, Electronics 2021, 10 (11), 1250, DOI 10.3390/electronics10111250,
3. M. Gams, T. Kolenik. Relations between Electronics, Artificial Intelligence and Information Society through Information Society Rules, Electronics 2021, 10(4), MDPI, DOI 10.3390/electronics10040514
4. T. Kolenik, G. Schiepek, M. Gams. "Computational Psychotherapy System for Mental Health Prediction and Behavior Change with a Conversational Agent," Neuropsychiatric Disease and Treatment, vol. 20, pp. 2465–2498, Dec. 2024, DOI: 10.2147/NDT.S417695.
5. M. Gams, S. Kramar. Evaluating ChatGPT’s consciousness and its capability to pass the Turing test : A comprehensive analysis. Journal of computer and communications. 2024, vol. 12, no. 3, str. 219-237. ISSN 2327-5227. DOI: 10.4236/jcc.2024.123014. [COBISS.SI-ID 192374531]