Učni načrt predmeta

Predmet:
Teorija kondenzirane snovi
Course:
Condensed Matter Theory
Študijski program in stopnja /
Study programme and level
Študijska smer /
Study field
Letnik /
Academic year
Semester /
Semester
Nanoznanosti in nanotehnologije, 2. stopnja / 1 2
Nanosciences and Nanotechnologijes, 2nd cycle / 1 2
Vrsta predmeta / Course type
Izbirni / Elective
Univerzitetna koda predmeta / University course code:
NANO2-267
Predavanja
Lectures
Seminar
Seminar
Vaje
Tutorial
Klinične vaje
work
Druge oblike
študija
Samost. delo
Individ. work
ECTS
30 30 30 210 10

*Navedena porazdelitev ur velja, če je vpisanih vsaj 15 študentov. Drugače se obseg izvedbe kontaktnih ur sorazmerno zmanjša in prenese v samostojno delo. / This distribution of hours is valid if at least 15 students are enrolled. Otherwise the contact hours are linearly reduced and transfered to individual work.

Nosilec predmeta / Course leader:
prof. dr. Viktor Kabanov
Sodelavci / Lecturers:
Jeziki / Languages:
Predavanja / Lectures:
Slovenski, angleški / Slovenian, English
Vaje / Tutorial:
Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:
Prerequisites:

Zaključen študij prve stopnje s področja naravoslovja ali tehnike ali zaključen študij prve stopnje na drugih področjih z znanjem osnov s področja predmeta.

Completed first-cycle studies in natural sciences or engineering or completed first-cycle studies in other fields with knowledge of fundamentals in the field of this course.

Vsebina:
Content (Syllabus outline):

1. Uvod.
2. Osnove teorije grup: Ireducibilne upodobitve. 3. Nihanja v kristalnih rešetkah. Klasifikacija nihanj.
4. Elektroni v kristalu: približek tesne vezi in šibke sklopitve.
5. Teorija gostotnega funkcionala za opis elektronske strukture.
6. Različni tipi kristalov: kovalentni, molekulski in ionski kristali, kristali na podlagi vodikove vezi kovine.
7. Lokalizirani elektroni v kristalu: eksitoni in polaroni.
8. Termodinamske lastnosti trdnih snovi.
9. Magnetne lastnosti: Paulijev paramagnetizem, Landau-ov diamagnetizem. Kvantni efekti.
10. Optične lastnosti trdnih snovi. Dielektrična funkcija.
11. Kinetične lastnosti kovin in polprevodnikov. Kinetična enačba.
12. Pojav sipanja. Sipanje nečistoč, fononsko sipanje.
13. Kinetični procesi v magnetnem polju. Hallov efekt in magnetoupornost.
14. Teorija faznih prehodov. Isingov model, Landau-ova teorija faznih prehodov. Kinetika faznih prehodov.
15. Superprevodnost. Cooperjevi pari. Ginzburg- Landau-ova teorija. Kritični tok in kritično polje. Kvantni efekti.
16. Strukture nižjih dimenzij: površine in molekule ter njihova interakcija - heterogena kataliza.

1. Introduction.
2. Elements of group theory. Irreducible representations.
3. Lattice vibrations in crystalline solids. Mode classifications.
4. Electrons in crystals. Tight-binding and weak coupling approximations.
5. Density-Functional-Theory: a practical first-principle method for the calculation of electronic structure.
6. Classification of solids: covalent, molecular, ionic, H-bonded crystals and metals.
7. Localized electrons in solids. Excitons. Polarons.
8. Thermodynamic properties of solids.
9. Magnetic properties. Pauli paramagnetism, Landau diamagnetism. Quantum effects.
10. Optical properties of solids. Dielectric function.
11. Kinetic properties of metals and
semiconductors. Kinetic equation.
12. Scattering processes. Impurity scattering,
scattering by phonons.
13. Kinetic processes in magnetic field. Hall effect, magnetoresistance.
14. Theory of phase transition. Ising model, Landau theory of phase transition. Kinetics of phase transitions.
15. Superconductivity. Cooper pairs. Ginzburg-
Landau theory. Critical current and critical field.
Quantum effects.
16. From 3D to lower dimensions: surfaces,
molecules, and heterogeneous catalysis.

Temeljna literatura in viri / Readings:

N.W. Ashcroft N.D. Mermin, Solid State Physics, Holt-Saunders, 1976.
A.A. Abrikosov, Fundamentals of the theory of metals, North-Holland, 1988.
P.G. de Gennes, Superconductivity of Metals and Alloys, Perseus books, 1999.
L.D. Landau and E.M. Lifshitz, Statistical Physics, Pergamon Press, 2005.
E.M. Lifshitz and L.P. Pitaevskii, Statistical Physics, Pergamon Press, 2002.
Charles Kittel, Introduction to Solid State, J. Wiley, 2005.
R.M. Martin, Electronic structure: basic theory and practical methods, Cambridge University Press, 2004.

Cilji in kompetence:
Objectives and competences:

Cilj predmeta je spoznavanje aktualnih problemov in najnovejših dosežkov na področju teorije nanomaterialov.

The goal of this course is to give an overview of the major directions of research and the latest achievements in the field of theory of nanomaterials.

Predvideni študijski rezultati:
Intendeded learning outcomes:

Študentje bodo dobili pregled o teoretičnih
metodah za študij fizike trdnih snovi. Pri tem bodo pridobili osnovno razumevanje elektronske teorije, teorije pasov, električnih, magnetnih in
superprevodnih lastnostih materialov in
nanomaterialov. Seznanili se bodo s popularno
metodo za izračun elektronske strukture trdnih
snovi, t.j. teorijo gostotnega funkcionala.

Students will gain an overview of theoretical
techniques for studying physics of solid state. They will gain a basic understanding of theory of electron systems, band theory and electrical, magnetic and superconducting properties of materials and nanomaterials. They will learn the fundamentals of density-functional-theory: a first principles method for the calculation of the electronic structure of solids.

Metode poučevanja in učenja:
Learning and teaching methods:

Predavanja, seminarji, konzultacije, laboratorijsko delo

Lectures, seminar work, consultations, laboratory work

Načini ocenjevanja:
Delež v % / Weight in %
Assesment:
Pisni izpit
50 %
Written exam
Ustni izpit
50 %
Oral examination
Reference nosilca / Lecturer's references:
1. SHUMILIN, A. V., KABANOV, Viktor V., DEDIU, V. I. Magnetoresistance in organic semiconductors : including pair correlations in the kinetic equations for hopping transport. Physical review. B, ISSN 2469-9950, 2018, vol. 97, no. 9, str. 094201-1-094201-9, doi: 10.1103/PhysRevB.97.094201.
2. BUH, Jože, MRZEL, Aleš, KOVIČ, Andrej, KABANOV, Viktor V., JAGLIČIĆ, Zvonko, VRTNIK, Stanislav, KOŽELJ, Primož, MIHAILOVIĆ, Dragan. Phase slip and telegraph noise in δ−MoNδ−MoN nanowires. Physica. C, Superconductivity and its applications, ISSN 0921-4534. [Print ed.], 2017, vol. 535, str. 24-29, doi: 10.1016/j.physc.2017.03.003.
3. BECK, M., KABANOV, Viktor V., DEMŠAR, Jure, et al. Energy dependence of the electron-boson coupling strength in the electron-doped cuprate superconductor Pr[sub](1.85)Ce[sub](0.15)CuO[sub](4- [delta]). Physical review. B, ISSN 2469-9950, 2017, vol. 95, no. 8, str. 085106-1-085106-8, doi: 10.1103/PhysRevB.95.085106.
4. MADAN, Ivan, BARANOV, Vladimir V., TODA, Y., ODA, Migaku, KUROSAWA, T., KABANOV, Viktor V., MERTELJ, Tomaž, MIHAILOVIĆ, Dragan. Dynamics of superconducting order parameter through ultrafast normal-to-superconducting phase transition in Bi2Sr2CaCu2O8+δBi2Sr2CaCu2O8+δ from multipulse polarization-resolved transient optical reflectivity. Physical review. B, ISSN 2469-9950, 2017, vol. 96, no. 18, str. 184522-1- 184522-9, doi: 10.1103/PhysRevB.96.184522.
5. BUH, Jože, KABANOV, Viktor V., BARANOV, Vladimir V., MRZEL, Aleš, KOVIČ, Andrej, MIHAILOVIĆ, Dragan. Control of switching between metastable superconducting states in δδ-MoN nanowires. Nature communications, ISSN 2041-1723, 2015, vol. 6, str. 10250-1-10250-6, doi: 10.1038/ncomms10250.