| 1. |
ŽNIDARŠIČ, Martin, OSOJNIK, Aljaž, RUPNIK, Peter, ŽENKO, Bernard. Improving effectiveness of a coaching system through preference learning. Technologies. 2022, vol. 10, no. 1, str. 24-1-24-14. ISSN 2227-7080. DOI: 10.3390/technologies10010024.
|
| 2. |
FERJANČIČ, Urša, ICHEV, Riste, LONČARSKI, Igor, MONTARIOL, Syrielle, PELICON, Andraž, POLLAK, Senja, SITAR ŠUŠTAR, Katarina, TOMAN, Aleš, VALENTINČIČ, Aljoša, ŽNIDARŠIČ, Martin. Textual analysis of corporate sustainability reporting and corporate ESG scores. International review of financial analysis. [Print ed.]. Nov. 2024, vol. 96, part b, article no. 103669, 15 str. ISSN 1057-5219. Repozitorij Univerze v Ljubljani – RUL, DOI: 10.1016/j.irfa.2024.103669.
|
| 3. |
ŽENKO, Bernard, ŽNIDARŠIČ, Martin, KONTIĆ, Davor, BOHANEC, Marko. Multi-criteria assessment of sustainable mobility of employees. Journal of decision systems. [in press] 2024, vol. 33, iss. , str. 1-14, ilustr. ISSN 2116-7052. https://www.tandfonline.com/doi/full/10.1080/12460125.2024.2349454, DOI: 10.1080/12460125.2024.2349454.
|
| 4. |
AZIZ, Fatima, ŽNIDARŠIČ, Martin. Classification of bug severity with lexicon approaches. V: ERMAN, Nuša (ur.). 15th International Conference on Information Technologies and Information Society : ITIS 2024 : ["Harnessing the power of big data for green and digital transition"] : conference proceedings : November 7-8, 2024, Ljubljana, Slovenia. Novo mesto: Faculty of information studies, 2024. Str. 196-205, tabela. ISBN 978-961-96549-1-0.
|
| 5. |
MONTARIOL, Syrielle, MARTINC, Matej, PELICON, Andraž, POLLAK, Senja, KOLOSKI, Boshko, LONČARSKI, Igor, VALENTINČIČ, Aljoša, SITAR ŠUŠTAR, Katarina, ICHEV, Riste, ŽNIDARŠIČ, Martin. Multi-task learning for features extraction in financial annual reports. V: KOPRINSKA, Irena (ur.). Machine learning and principles and practice of knowledge discovery in databases : international workshops of ECML PKDD 2022, Grenoble, France, September 19-23, 2022, : proceedings. Part 2. Cham: Springer, 2023. Str. 7-24. Communications in computer and information science (Print), vol. 1753. ISBN 978-3-031-23632-7. ISSN 1865-0929. DOI: 10.1007/978-3-031-23633-4_1.
|