MPŠ MP&Scaron MP&Scaron MP&Scaron Avtorji

Jožef Stefan
Postgraduate School

Jamova 39
SI-1000 Ljubljana

Phone: +386 1 477 31 00
Fax: +386 1 477 31 10


Latest news

We invite you to the 4th Institute colloquium in the academic year 2016/17. The colloquium will be held on Wednesday October 12, 2016 at 1 PM in the main Institute lecture hall, Jamova 39, Ljubljana.

prof. dr. Peter A. van Aken

Max Planck Institute for Solid State Research, Stuttgart, Germany

Structural defects and local interfacial chemistry of complex oxide heterointerfaces

Transition metal oxide superlattices have been widely investigated during recent years as they are one of the largest material groups where physical and chemical properties such as ferroelectricity, magnetism, ionic and electronic conductivity are closely coupled to structural parameters. Cation sub­sti­tution in complex oxides is an effective way to develop the functionalities through carrier doping, band engineering, or application of chemical pressure. For example, the coupling between charge and spin degrees of freedom across the interfaces and the local charge carrier concentration profiles have profound influences on the occurrence of superconductivity in low dimensional systems. Super­conductivity arises when a parent insulator compound is doped beyond some critical con-centration. Furthermore, the magnetic behaviour and conductivity of complex oxide superlattices can be tuned by controlling the layer thickness and by selecting appropriate intervening layer materials.

Various methods for growing controlled superlattice structures exist, a favourite has been pulsed laser deposition (PLD), but molecular beam epitaxy (MBE) is now also popular because of the controlled deposition rate and the flexibility allowed by the use of individual element sources. In theory, this allows composition control to the level of individual atomic layers. The PLD process requires higher temperatures and pressures than MBE. It also involves significantly higher energies for the impinging particles, which has potential implications for the interface roughness. In this presentation, I will discuss mapping of the local structure and interfacial chemistry of various complex oxide hetero-interfaces through advanced scanning transmission electron microscopy (STEM) in combination with energy-dispersive x-ray (EDX) analysis and electron energy-loss spectroscopy (EELS). EELS allows for local probing of chemical composition and bonding, as well as electronic and magnetic structure, making the combination of STEM and EELS ideal for discovery of structure-property correlations at the atomic scale.

To read the abstract click Past colloquia are posted on

Cordially invited!