MPŠ MP&Scaron MP&Scaron MP&Scaron Avtorji

Jožef Stefan
Postgraduate School

Jamova 39
SI-1000 Ljubljana

Phone: +386 1 477 31 00
Fax: +386 1 477 31 10


Course Description

Microscopical and Microanalytical Methods


Nanosciences and Nanotechnologies, third-level study programme


prof. dr. Miran Čeh
dr. Erik Zupanič
prof. dr. Goran Dražić
prof. dr. Sašo Šturm


To get the students acquainted with the most important and recent microscopical and microanalytical methods for identification and characterization of the structure and chemical composition of materials on micro-, nano- and atomic scale. All discussed techniques are available at the Jožef Stefan Institute.


The course includes theoretical and practical work with the following techniques:

• Electron microscopy: scanning electron microscopy (SEM), transmission electron microscopy (TEM, CTEM, HRTEM), electron diffraction (SAD, micro-diffraction), scanning transmission electron microscopy (STEM, HAADF-STEM)
• Scanning probe microscopy (SPM): scanning tunnelling microscopy (STM), atomic force microscopy (AFM)
• Microanalysis: energy-dispersive X-ray spectroscopy (EDXS), wave-dispersive X-ray spectroscopy (WDXS), electron energy loss spectroscopy (EELS).

Course literature:

1. J. I. Goldstein et al., Scanning Electron Microscopy and X-ray Microanalysis, Plenum Press, 1992
2. D. C. Joy, Principles of Analytical Electron Microscopy, Plenum Press, 1986
3. D. B. Williams, C. B. Carter, Transmission Electron Microscopy, Plenum Press, 1996
4. Ludwig Reimer, Transmission Electrons Microscopy, Springer, 1997
5. R. Wiesendanger, Scanning probe microscopy and spectroscopy, Methods and applications, Cambridge University Press, Cambridge, 1994

Significant publications and references:

Prof. dr. A. Prodan
1. A. Prodan, V. Marinković, M. Rojšek, N. Jug, H. J. P. van Midden, F. W. Boswell, J. C. Bennett and H. Böhm, The Surface Superstructures in Niobium Disulfide and Diselenide Intercalated by Cu, Co and Fe, Surf. Sci., 476/1-2, 71-77 (2001).

2. A. Prodan, N. Jug, H. J. P. van Midden, H. Böhm, F. W. Boswell and J. C. Bennett, An alternative model for the structural modulation in NbSe3 and TaS3, Phys. Rev. B64, 115423 (2001).

3. S. W. Hla, A. Prodan, H. J. P. van Midden, Atomistic Stress Fluctuation at Surfaces and Edges of Epitaxially Grown Silver Nanorods, Nano Lett., 4, 1221-1224 (2004).

4. A. Prodan, N. Jug, H. J. P. van Midden, F. W. Boswell, J. C. Bennett and H. Böhm, Intercalation and Surface Supported Charge Density Waves in Nb3X4 (X = S, Se, Te), Ferroelectrics, 305, 89-93 (2004).

5. R. L. Withers, H. J. P. van Midden, A. Prodan, R. Vincent and J. Schoenes Charge Density Waves, Fermi surfaces and the anomalous electrical transport properties of UAsSe and ThAsSe, J. Sol. St. Chem., 179, 2190-2198 (2006).

6. P. Starowicz, C. Battaglia, F. Clerc, L. Despont, A. Prodan, H. J. P. van Midden, U. Szerer, A. Szytula, M. G. Garnier and P. Aebi, Electronic structure of ZrTe3, J. of Alloys and Comp., 442, 268-271 (2007).

Doc. dr. M. Čeh
1. M. Čeh, Scanning transmission electron microscopy (STEM) of Ruddlesden-Popper faults in nonstoichiometric CaTiO3, Acta chim. slov., 48, 63-76 (2001).

2. M. Remškar, A. Mrzel, Z. Škraba, A Jesih, M. Čeh, J. Demšar, P. Stadelmann, F. Levy, D. Mihailović, Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes, Science (Wash. D.C.), 292, 479-481 (2001).

3. T. Yamazaki, N. Nakanishi, A Rečnik, M. Kawasaki, K. Watanabe, M, Čeh, M. Shiojiri, Quantitative high-resolution HAADF-STEM analysis of inversion boundaries in Sb2O3-doped zinc oxide, Ultramicroscopy, 98, 305-316 (2004).

4. M. Shiojiri, M. Čeh, S. Šturm, C.C. Chuo, J.T. Hsu, J.R. Yang, H. Saijo, Structural and compositional analyses of a strained AlGan/GaN superlattice, J. appl. phys., 100, 03110-1-03110-7 (2006).

5. H.L. Tsai, T.Y. Wang, J.R. Yang, C.C. Chuo, J.T. Hsu, M. Čeh, M. Shiojiri, Structural analysis of strained p-type AlGaN/GaN superlattice, J. appl. phys., 101, 023521-1-023521-6. 2007


Oral exam.

Students obligations:

Oral exam.