### Course Description

# Fundamentals of Physics of Materials

## Program

Nanosciences and Nanotechnologies, second-level study programme## Lecturers:

prof. dr. Zdravko Kutnjakprof. dr. Boštjan Zalar

## Goals:

Students are expected to become familiar with a broad range of phenomena in condensed matter physics with the goal of establishing a systematic basis for the development of skills for engineering new advanced materials and functional micro- and nanostructures.

## Content:

1. Structure of condensed matter systems

a) Solid and soft systems

b) Concept of symmetry and broken symmetries

c) Order parameter and correlation functions

d) Particle interactions

e) Energies and potentials

f) Liquid, mesomorphic and crystal phases

g) Incommensurate structures

h) Quasicrystals

2. Thermodynamics and statistical mechanics

a) The three laws of thermodynamics

b) Thermodynamic potentials

c) Concept of phase space

d) Equation of state

3. Symmetries in crystals

a) Translational and rotational symmetries; space groups

b) The reciprocal lattice

c) Dimensionality of order parameter and dimensionality of material

4. Scattering theory

a) Bragg and Laue scattering conditions

b) Scattering of phonons, electrons and neutrons

c) Fourier transformation

5. Electrons and phonons in crystals

a) Quantum mechanics of free electrons

b) Periodic functions and electrons in periodic potentials

c) Harmonic lattice vibrations

d) Fermions and bosons

e) Electrical conduction properties

f) Specific heat of a crystal lattice

6. Elastic properties

a) Stress and strain

b) Isotropic and cubic solids

c) Propagation of sound

7. Magnetism

a) Magnetic dipole moment and magnetization

b) Paramagnetism and diamagnetism

c) Induced vs. spontaneous magnetization

d) Mean field theory and the Ising model

e) Domains and hysteresis

f) Landau free energy

g) Critical phenomena and scaling theory

8. Superconductivity

a) Phenomenological theory

b) Thermodynamics of superconductors

c) Josephson effect

9. Dislocations in solids

a) Topological characteristics

b) Vacancies and interstitials

c) Diffusion of point defects

d) Martensitic transformations

10. Fluids

a) Isotropic and anisotropic fluids

b) Viscosity

c) Navier-Stokes equation

d) Laminar and turbulent flow

e) Binary fluids and phase separation

f) Colloids and solutions

11. Polymers and liquid crystals

a) Ideal and Flory chains

b) Entropic elasticity

c) Nematic and smectic order

d) Maier-Saupe theory

12. Surface phenomena

a) Surface tension

b) Adsorption and wetting

## Course literature:

1. Copies of lecture notes;

2. Neil W. Ashcroft, N. David Mermin, “Solid State Physics” (Saunders College, Philadelphia, 1987);

3. Maurice Kleman, Oleg D. Lavrentovich, “Soft Matter Physics” (Springer-Verlag, New York, 2003);

4. Gert Strobl, “Condensed Matter Physics” (Springer-Verlag, New York, 2004);

5. P. M. Chaikin, T. C. Lubensky, “Principles of Condensed Matter Physics” (Cambridge University Press, Cambridge, 1995).

## Significant publications and references:

1. W. Kleemann, J. Dec, V. V. Shvartsman, Z. Kutnjak, T. Brown, “Two-dimensional ising model criticallity in a three-dimensional uniaxial relaxor ferroelectric with frozen polar nanoregions”, Phys. Rev. Lett. 97, 065702 (2006);

2. Z. Kutnjak, J. Petzelt, R. Blinc, “The giant electromechanical response in ferroelectric relaxors as a critical phenomenon”, Nature 441, 956 (2006);

3. Z. Kutnjak, C. Filipic, R. Podgornik, L. Nordenskiold, N. Korolev, »Electrical conduction in native DNA: hole hopping transfer mechanism«, Phys. Rev. Lett. 90, 098101 (2003);

4. A. Lebar, Z. Kutnjak, S. Žumer, H. Finkelmann, A. Sanchez-Ferrer, B. Zalar, “Evidence of supercritical behavior in liquid single crystal elastomers”, Phys. Rev. Lett. 94, 197801 (2005);

5. R. Blinc, B. Zalar, V. V. Laguta, M. Itoh, “Order-disorder component in the phase transition mechanism of 18O enriched strontium titanate”, Phys. rev. Lett. 94, 147601 (2005);

6. B. Zalar, V. V. Laguta and R. Blinc, “NMR Evidence for the Coexistence of Order-Disorder and displacive Components in Barium Titanate”, Phys. Rev. Lett 90, 037601 (2003);

## Examination:

Written and oral examination.

## Students obligations:

Attendance at lectures on time and contribution to class discussion.

## Links:

www.ijs.si/~bzalar/J._Stefan_IPS/Physics_of_Materials/Physics_of_Materials.pdf